Search results for "Knudsen number"

showing 10 items of 13 documents

Effects of temperature and pressure on microcantilever resonance response.

2003

Abstract The variation in resonance response of microcantilevers was investigated as a function of pressure (10 −2 –10 6  Pa) and temperature (290–390 K) in atmospheres of helium (He) and dry nitrogen (N 2 ). Our results for a silicon cantilever under vacuum show that the frequency varies in direct proportion to the temperature. The linear response is explained by the decrease in Young's modulus with increasing the temperature. However, when the cantilever is bimaterial, the response is nonlinear due to differential thermal expansion. Resonance response as a function of pressure shows three different regions, which correspond to molecular flow regime, transition regime, and viscous regime. …

CantileverChemistryMean free pathThermodynamicschemistry.chemical_elementYoung's modulusMolecular physicsAtomic and Molecular Physics and OpticsThermal expansionElectronic Optical and Magnetic Materialssymbols.namesakeFree molecular flowDeflection (engineering)symbolsKnudsen numberInstrumentationHeliumUltramicroscopy
researchProduct

Exploring the applicability of dissipative fluid dynamics to small systems by comparison to the Boltzmann equation

2018

[Background] Experimental data from heavy-ion experiments at RHIC-BNL and LHC-CERN are quantitatively described using relativistic fluid dynamics. Even p+A and p+p collisions show signs of collective behavior describable in the same manner. Nevertheless, small system sizes and large gradients strain the limits of applicability of fluid-dynamical methods. [Purpose] The range of applicability of fluid dynamics for the description of the collective behavior, and in particular of the elliptic flow, of small systems needs to be explored. [Method] Results of relativistic fluid-dynamical simulations are compared with solutions of the Boltzmann equation in a longitudinally boost-invariant picture. …

Nuclear TheoryFLOWMODELSFOS: Physical sciencesHEAVY-ION COLLISIONShiukkasfysiikka01 natural sciences114 Physical sciencesPhysics::Fluid DynamicsNuclear Theory (nucl-th)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesFluid dynamicsInitial value problemTensor010306 general physicsRELATIVISTIC FLUIDSKINETIC-THEORYPhysicscollective flowta114010308 nuclear & particles physicsElliptic flowReynolds number16. Peace & justiceBoltzmann equationFREEZE-OUTHigh Energy Physics - PhenomenologyClassical mechanicssymbolsDissipative systemKnudsen numberhydrodynamic modelsrelativistic heavy-ion collisions
researchProduct

Derivation of transient relativistic fluid dynamics from the Boltzmann equation

2012

In this work we present a general derivation of relativistic fluid dynamics from the Boltzmann equation using the method of moments. The main difference between our approach and the traditional 14-moment approximation is that we will not close the fluid-dynamical equations of motion by truncating the expansion of the distribution function. Instead, we keep all terms in the moment expansion. The reduction of the degrees of freedom is done by identifying the microscopic time scales of the Boltzmann equation and considering only the slowest ones. In addition, the equations of motion for the dissipative quantities are truncated according to a systematic power-counting scheme in Knudsen and inve…

PhysicsHigh Energy Physics - TheoryNuclear and High Energy Physicsta114Nuclear TheoryDegrees of freedom (physics and chemistry)Lattice Boltzmann methodsEquations of motionFOS: Physical sciencesMethod of moments (statistics)Plasma modelingBoltzmann equationNuclear Theory (nucl-th)Physics::Fluid DynamicsHigh Energy Physics - PhenomenologyClassical mechanicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Direct simulation Monte CarloKnudsen number
researchProduct

Evaluation of permeability applicability based on continuum mechanics law in fluid flow through graphene membrane

2019

AbstractGraphene is expected to be used in separation applications such as desalination. However, it is difficult to predict the flow phenomena at the nanoscale using the conventional continuum law. Particularly at a Knudsen number (Kn) of >0.1, which is applied in filtration, it has been reported that not even slip boundary conditions can be applied. In this study, to identify the parameters that affect the applicability of the continuum law, we conducted a fluid permeation simulation using graphene. The deviation of the permeability from that of the continuum model was calculated by changing the channel width, fluid temperature, and fluid type. The result showed that the channel width …

0301 basic medicineNanoscale materialsMultidisciplinaryMaterials scienceContinuum mechanicsContinuum (measurement)lcsh:Rlcsh:MedicineSlip (materials science)PermeationArticleMechanical engineering03 medical and health sciencesPermeability (earth sciences)030104 developmental biology0302 clinical medicineLawFluid dynamicslcsh:QKnudsen numberBoundary value problemGraphenelcsh:Science030217 neurology & neurosurgeryScientific Reports
researchProduct

Diffusion of Oxygen through Cork Stopper: Is It a Knudsen or a Fickian Mechanism?

2014

International audience; The aim of this work is to identify which law governs oxygen transfer through cork: Knudsen or Fickian mechanism. This is important to better understand wine oxidation during post-bottling aging. Oxygen transfer through cork wafers is measured at 298 K using a manometric permeation technique. Depending on the mechanism, we can extract the transport coefficients. Increasing the initial pressure of oxygen from 50 to 800 hPa leads to a change in the values of the transport coefficients. This implies that oxygen transport through cork does not obey the Knudsen law. From these results, we conclude that the limiting step of oxygen transport through cork occurs in the cell …

Chemical PhenomenaDiffusionchemistry.chemical_elementThermodynamicsWineCorkengineering.materialOxygenPermeabilityQuercusactivation volume[CHIM]Chemical SciencesdiffusionFood PackagingOxygen transportGeneral ChemistryPermeationFick's laws of diffusionOxygenchemistryVolume (thermodynamics)oxygen transportengineeringThermodynamicspermeationGasesKnudsen numbercork stopperGeneral Agricultural and Biological SciencesOxidation-Reduction
researchProduct

Does interferometry probe thermalization?

2009

We carry out a systematic study of interferometry radii in ultrarelativistic heavy-ion collisions within a two-dimensional transport model. We compute the transverse radii R_o and R_s as a function of p_t for various values of the Knudsen number, which measures the degree of thermalization in the system. They converge to the hydrodynamical limit much more slowly (by a factor 3) than elliptic flow. This solves most of the HBT puzzle for central collisions: R_o/R_s is in the range 1.1-1.2 for realistic values of the Knudsen number, much closer to experimental data ($\simeq 1$) than the value 1.5 from hydrodynamical calculations. The p_t dependence of R_o and R_s, which is usually said to refl…

PhysicsNuclear and High Energy PhysicsDegree (graph theory)Nuclear TheoryElliptic flowFOS: Physical sciencesNuclear Theory (nucl-th)Knudsen flowThermalisationAmplitudeSensitivity (control systems)Knudsen numberAtomic physicsEccentricity (mathematics)Nuclear Experiment
researchProduct

Extended Environmental Contour Methods for Long-Term Extreme Response Analysis of Offshore Wind Turbines1

2020

Abstract Environmental contour method is an efficient method for predicting the long-term extreme response of offshore structures. The traditional environmental contour is obtained using the joint distribution of mean wind speed, significant wave height, and spectral peak period. To improve the accuracy of traditional environmental contour method, a modified method was proposed considering the non-monotonic aerodynamic behavior of offshore wind turbines. Still, the modified method assumes constant wind turbulence intensity. In this paper, we extend the existing environmental contour methods by considering the wind turbulence intensity as a stochastic variable. The 50-year extreme responses …

Turbulence020209 energyMechanical EngineeringOcean Engineering02 engineering and technologySpace (mathematics)Wind speedTerm (time)Extreme ResponseOffshore wind power020401 chemical engineering0202 electrical engineering electronic engineering information engineeringEnvironmental scienceKnudsen number0204 chemical engineeringMarine engineeringJournal of Offshore Mechanics and Arctic Engineering
researchProduct

Relative importance of second-order terms in relativistic dissipative fluid dynamics

2013

In Denicol et al., Phys. Rev. D 85, 114047 (2012), the equations of motion of relativistic dissipative fluid dynamics were derived from the relativistic Boltzmann equation. These equations contain a multitude of terms of second order in Knudsen number, in inverse Reynolds number, or their product. Terms of second order in Knudsen number give rise to non-hyperbolic (and thus acausal) behavior and must be neglected in (numerical) solutions of relativistic dissipative fluid dynamics. The coefficients of the terms which are of the order of the product of Knudsen and inverse Reynolds numbers have been explicitly computed in the above reference, in the limit of a massless Boltzmann gas. Terms of …

PhysicsNuclear and High Energy PhysicsNuclear Theoryta114Lattice Boltzmann methodsFluid Dynamics (physics.flu-dyn)Reynolds numberFOS: Physical sciencesPhysics - Fluid DynamicsNonlinear Sciences::Cellular Automata and Lattice GasesBoltzmann equationPhysics::Fluid DynamicsNuclear Theory (nucl-th)High Energy Physics - Phenomenologysymbols.namesakeClassical mechanicsHigh Energy Physics - Phenomenology (hep-ph)Boltzmann constantsymbolsDissipative systemFluid dynamicsKnudsen numberDirect simulation Monte CarloPhysical Review D
researchProduct

Asymptotic Analysis of a Slightly Rarefied Gas with Nonlocal Boundary Conditions

2011

In this paper nonlocal boundary conditions for the Navier–Stokes equations are derived, starting from the Boltzmann equation in the limit for the Knudsen number being vanishingly small. In the same spirit of (Lombardo et al. in J. Stat. Phys. 130:69–82, 2008) where a nonlocal Poisson scattering kernel was introduced, a gaussian scattering kernel which models nonlocal interactions between the gas molecules and the wall boundary is proposed. It is proved to satisfy the global mass conservation and a generalized reciprocity relation. The asymptotic expansion of the boundary-value problem for the Boltzmann equation, provides, in the continuum limit, the Navier–Stokes equations associated with a…

Nonlocal boundary conditionGaussianMathematical analysisTurbulence modelingStatistical and Nonlinear PhysicsMixed boundary conditionPoisson distributionBoltzmann equationPhysics::Fluid DynamicsBoltzmann equationFluid dynamic limitsymbols.namesakesymbolsKnudsen numberAsymptotic expansionConservation of massSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematics
researchProduct

Latest results from the EbyE NLO EKRT model

2017

We review the results from the event-by-event next-to-leading order perturbative QCD + saturation + viscous hydrodynamics (EbyE NLO EKRT) model. With a simultaneous analysis of LHC and RHIC bulk observables we systematically constrain the QCD matter shear viscosity-to-entropy ratio eta/s(T), and test the initial state computation. In particular, we study the centrality dependences of hadronic multiplicities, pT spectra, flow coefficients, relative elliptic flow fluctuations, and various flow-correlations in 2.76 and 5.02 TeV Pb+Pb collisions at the LHC and 200 GeV Au+Au collisions at RHIC. Overall, our results match remarkably well with the LHC and RHIC measurements, and predictions for the…

Nuclear and High Energy PhysicsParticle physicsNuclear TheoryHadronFOS: Physical sciences01 natural sciences114 Physical sciencesPhysics::Fluid DynamicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsNuclear ExperimentQCD matterPhysicsLarge Hadron Colliderta114010308 nuclear & particles physicssaturationElliptic flowHigh Energy Physics::PhenomenologyPerturbative QCDObservableMultiplicity (mathematics)heavy-ion collisionsHigh Energy Physics - Phenomenologynext-to-leading order perturbative QCD calculationsHigh Energy Physics::ExperimentKnudsen numberdissipative fluid dynamicsheavy-ion collisions next-to-leading order perturbative QCD calculations saturation dissipative fluid dynamicsNuclear Physics A
researchProduct